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Abstract --- VLS| data compression research has
been motivated by the needs of high-speed high-
performance data compression and inspired by the
VLSI technologies, An integrated data con»vression
system has been proposed to provide}‘ adaptive
mulli-mode data compression for an advanced
multi-instrument spacecraft payload system that
has various source data. It combines a high-ratio
lossy data compressor with a lossless data
compressor to provide various compression schemes.
The embeddedlossy compressor is a high-speed
neuroprocessor for adaptive vector quantization
based upon a frequency-sensitive self-organization
neural algorithm, The embedded lossless
compressor is a high-speed pipelined processor
design based on the Rice algorithm.

1 Introduction

1)Jata compression is essential in reducing the
data transmission or storage costs for broad arcas of
applications such as high-definition television,
teleconferencing, remote sensing, radar, sonar,
computer communication, facsimile transmission,
image database management, and science
instrument. in the research fieldof data
compression, important contributions have come
from information sciences, computer sciences, signal
and image processing, computer engincering, very
larCc-scale integration (VLSD) technologices, ete. [1-
8]. A newirendof this research appears to have
shifted from basic research to system development,
in particular to high-speed VLSlimplementation
of image and video coders [6-8]. The driving forces
behind this trend arc as follows. (a) Advances of
clectronic technologics, especially dramatic
progress in VLS] technologies, make more
sophisticated data compression systems possible.
(b) The increasingly strong demands on large-
volume data communication and storage

requirements in Informat ion Age. (c) Scveral key
driving applications require high-performance
data compression techniques such as high-
definition TV, advanced multi-media information
systems, integrated scrvice data  networks,
satellite imaging system, and the space science
data and communication systems.

VISl data compression research involves a
very broad spectrum of disciplines, including system
analysis, simulation of the processing algorithms,
extraction of parallel /pipeline computing structure,
development of processor archi t ecture, design of
functional and structural primitives, layout
generation of VLSl chips, fabrication, packaging,
testing of functional and electrical propertics,
reliability and qualification. More cfforts arc still
need cd to develop high-speed, high-performance
VI .SI data compression systems. Improvements in
the data compression algorithm, architecture,
software and hardware implementation, and
associated system-level design issues are critical to
effectively achieve the goal of data compression,

This tutorial paper presents the algorithms,
architectures and VLSI processors used in an
integrated data compression system. Section two
describes the proposed integrated data compression
system. Section three describes the embedded
lossless data compression processor. Section four
describes the embeddedlossy image compression
processor.

2 integrated 1 Jata Compression System

An integrated data compressionsystem has
been proposed to meet the needs of high-speed
high-performance data compression. 1 ts primary
application is targeted for the advanced mulii-
instrument spacecraft payload system that has
various source data such as science data, image,
video, and binary files [21]. Among these various
data types, the videco and image datais the drives



of the }~i~h-speed high-performance data
compression duetothe real-time high-fidelity
requirements and the large data volume involved.
Figure 1 shows a functional diagram of the
adaptive multi-mock data compression system that

combines a high-ratio lossy data compressor with a ,

lo sslcss data compressor to provide various
compression schemes tomeet a broad area of
applications for various instruments.
The features of the proposed adaplive multi-
instrument data compression systemarc
summarized as follows:
(A)  The proposed multi-mode data compression
scheme is reconfigurable to support five different
operation modes for various instruments: (a) bypass
(no compression), (b)lossy compression, () loslcss
compression, (d) lossy compression enhanced with
lossless compression, and (e) lossless compression
enhanced with lossy compression. Thelossy
compression portion is capable of producing good
reconstructed data quality at high compression
ratios while the lossless compression portion can
produce reconstructed data without any fidelity
loss. The reconfiguration signal $1, S2, and S3 arc
from the communication processor. The selection of
these compression modes is dependent on the
inherent nature of the targeted applications. The
effective maximum link or storage capability can be
approximately increased by the same ratio as the
achicved compression ratio over that of the
baseline system.
B) 1! has a communication co-processor to
perform the channel coding and variable-length
packetizationand thus provide a stringent error-
protected data quality and a flexible buffering
managementof the variable length data.
(@) It is a special-purpose high-speed signal
compressor design with a state-of-art VLSI
technologies and multichip module packaging to
mecetthe computation intensive and real time
processing requirements at a low mass, volume, and
power consuming.
) The applications of the proposed multi-
mode compression system cover a wide spectrum
such as lossless medical image compression, lossless
scienlific data compression, audio and video data
compression of high definition TV, multi-medium
data compression, and other data communication
anti/or storage applications.

The embeddedlossy compressor and 1o sslcss
compressor arc described in the following sections,

3 Neural-Network Based Lossy 1Data Compressor

A modified self-organization neural network
algorithm and its associated VLSI neural processor
have been developed for adaptive vector
quantization [9]. Section 3.1 describes the
frequency-sensitive self-orgallizatioll algorithm
and system-level analysis results.  Section 3.2
presents a massively paralleled V1.SIncural
network hardware to implement this algorithm.
Section 3.3 discusses the detailed circuit design of
the neural network processor chip. Section 3.4
presents the prototype chip.

3.1The FSO Neural Algorithm

The frequency-scmsitive self-organization
(FSO) method modifies competitive learning
method [11,1 2] by applying a winning frequency and
its associated upper-threshold value to the
cmtroid-based learning rule. The FSO method is a
fast and powerful scheme for adaptive vector
quantization duc to its relatively low computing
requirement and massivel y paralleled computing
structure. It systematically distributes the

codevectors in the vector space R? to approximate
the unknown probability density function of the
training vectors. Codevectors quantize the vector
space and converge to cluster centroids. Use of the
upper-threshold frequency (F¢p) can avoid
codevector under-utilization during the training
process for an inadequately chosen initial codebook.
Empirically, an adequate [} is chosen to be two to
three times larger than the average winning
frequency. The performance of the one-iteration
FSO method can beincrementall y improved by
using iteration to adjust codevectors into better
cluster centroids. The codebook obtained from the
previous iteration is used as the initial values of
the current iteration. After the first iteration, the
upper-threshold frequency is not needed, because a
good initial codebook is available. This method is
called the multiple-iteration FSO method. As
shown in Fig. 2, performance of the SO method is
very close to that of the .BG method {10].

The FSO method for adaptive vector
quantization is described as follows:
1) Initialize the codevectors Wi and the winning
frequency '; for cach distortion-co mputing neuron:

Wi =R®, (1)

FO)=1i=1...,N

!

where R() is a random vector-number gencration
function, M is the number of vector components, N is



the number of codevectors, and
Wi(0) = [Wi1(0), Wi2(0), . .., Wir(0)]. Notice that
the first N input vectors can also be used as the
initial codevectors instead of using results
generated from R().

2) Compuie the distortion 12i(f) between an input
vector X(1) and all codevectors:

M
Di) = d(X (1), Wil) = D (X)) -WifD)2, )
ia

wheref is the training, time index.
3) Select the distortion-computing neuron with the
smallest distortion and set its Output ;) to high:
00+ (] e O ST )
4) Update the codevectors with a frequency-
sensitive training rule and the associated winning
frequency:
Wi ((+1)= W,(I)+ S(1) ODIX@O WD) @)
1 . .
S0 = { )"1(1) if 1< 11(’? <Fy,
0 otherwise, (5)
Fi(t+ 1) = F()+ 0L0, (6)
where S(f) is the frequency-sensitive lecarning rate,
and Iy is the upper-threshokl frequency. Only the
winning codevector is updated. The training rule
moves the winning codevector toward the training
vector by a fractional amount which decreases as
the winning, frequency increases. If 1'jis larger than
Py, then set S(f) to zero and no further training
will be performed for this neural unit.
5) Repeatsteps 2 through 4 for all training vectors.

3.2 VLSI Neural Processor Architecture

The proposed VLSIncurocomputing
architecture for adaptive image compression using
the frequency-sensitive self-organization network
is shown in Fig. 3. The FSO network consists of two
layers: an input layer and a competitive layer. The
input layer consists of M input neurons, which
correspond to the elements of the M-dimensional
input vector. Each input neuron gets its input from
the external data bus and distributes the buffered
signalto N distortion-computing neural uni ts in the
competitive layer through the synapse matrix.
Each distortion-computing ncuron calculates a
squaw of Euclidean distance between its codevector
and the input vector. Thecompetitive process is
performed throughout the whole layer by the
winner-take-all opcration. The winning neural unit
is determined according to the minimum  distortion
criterion. The synapse weights are then updated

according to the SO learning rule as specified in
(4), (5), and (6). A mixed-si~nal VI.SI design
technique is usedto implement the paralleled
vector quantizer. The analog circuitry performs
massively paralleled neural computation and
digital circuitry processes multiple-bit address
information. This neural-based vector quantizer
realizes a full-scarch vector quantization process
for each input vector at a time complexity 0(1).
‘1 'he image data is accessed from the host computer
through the interface and timing control block. The
image data is divided into subimage blocks and can
be stored in the dual-port vector memory. A
subimage block is handled as a digital input vector.
The digital inputvector is converted into the
analog, value using the D-to-A converter array and
fedto input neurons of the paralleled vector
quantizer.

3.3 FSO Network Circuit

Figure 4 shows the functional block diagram of
the FSO network slice consisting of key circuit
blocks. The input ncuron is a conventional
operational amplifier in a unity-gain
configuration. The programmable synapse design is
a modified wide-range Gilbert multiplier [22],
which can perform real-valued multiplication in
four quadrants and achieve 8-bit precision. The
output summing, neuron is a amplifier with a lincar
floating resistor that linearly converts the summed
current up to TmA into an analog voltage with the
sign reversed, which is sent to the winner-take-all
(WTA) circuit. One WTA cell consists of two
portions. The first portion converts input voltage
into the current which is compared and
redistributed in the common signal line. The
resultant input current in the winning ccl] is
completely differentiated from all losing cells. in
the second portion, the current is converted into the
output voltage that provides fully binary output
values to interfaced with digital circuitry for
network lcarning. The simulated processing time for
one network iteration is less than 500 nsec. Fach
iteration cycle includes input buffering, synapse
multiplication, neuron summing, winner-take-a]l
operation, and index encoding.

3.4 Prototype Chip

The protot ype neural network processor chip for
a 25-dimensional adaptive vector quantizer of 64
codevectors was fabricated in a silicon arcaof 46
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mm x 6.8 mm using the 2-um CMOS technology.
This prototype chip includes 25 input neurons, 25 x
64 synapse cclls, 64 distortion-computing neu inns, a
winner-take-all circuit block, and a digital index
encoder. 1 (s throughput rate is 2 million vectors per
second and its equivalent computation power is 3.2
billion connections per second. 1 t achieved an
intrinsic compression ratio of 33. The dic photo of
this ncwral-based vector quantizer chip is shown in
Fig.5. This chip can also be intended to implement
vector quantization of a larger codebook. A n
adaptive vector quantizer of 1024 codevectors can be
implemented by cascading 16 such prototype chips
or by using alarger design in a submicron fabrication
technology.

4 Embedded Lossless Data Compressor

Lossless coding is a data compression technique
that is employedto compress the data without
inducing any distortion in the reconstructed data [3].
Lossless coding is also termed as noiscless coding,
reversible coding, redundancy reduction coding, and
entropy coding, Lossless coding is usually required
in such situat ions where the compression system
must be designed without prior knowledge of the
structure or end use of the original data, Lossless
coding is also suited as a post-processing stage for
further reduction of data compressed by a lossy
compression algorithm  to  maximize the
compression to distortion noise ratio.

4.1 Universal Noiseless Coder

Among existing lossless data compression
algorithms| 15-20], Rice algorithm [15] is an
effective method for producing reconstructed data
without any fidelity loss. It provides excellent
performance over a broad range of data contents. It
is also an efficiently implementable scheme for
V1 .S] realization. The universal noiseless coding
scheme in the Rice Algorithm is a subsetof
Huffiman codes optimal for Laplacian symbol sets
[20]. A gene’ric universal noiscless coder (UNC) is
givenin Fig. 6. It consists of three blocks: source
data conditioner, block adaptive entropy coder
(BAEQ), and compressed data formatter. Figure 7
shows a functional design of PS114 that is a specific
version of UNC A high-speed UNC compressor
chip has been implemented at a low hardware cost
by using a VI Slpipelined architecture [13,14].

4.2 Source Data Conditioner

The source data conditioner reversibly
reformats the raw data source into the standard
data source whose symbols can be represented by
uncorrelated non-negative integers, where smaller
integers arc more likely than that the larger ones.

The UNC design presumes that source data
conditioning can be done by either an off-chip
preprocessor or a cm-chip preprocessor. The function
of an off-chip preprocessor can be arbitrary. The
on-chip preprocessor is defined as a simple one-
dimensional predictor and a mapper as specified in
(7) and (8), respectively.

‘t’he prediction operation involves the
operation of taking di fferences between consecutive
pixels:

A = X(i) - x(3-1) (7)
where X(i) is thei th pixel and x(i-1) is the i-1 th
pixel. The ‘prediction operation reduces the data
entropy if- there is a high correlation among
adjacent pixels.

The mapping step transforms an (n-l 1 )-bit
difference into an n-bit positive integer
representation:

0= 2A---1 , 0<A<©

- 2A ,-0<A<O

{.041A , Al>0
Al Al @

where 0 = MI N[x(:-1), 27 -1 - x(@-1)} and n is the
number of bits per input pixel.

The source data conditioner is a regular n-bit
data path design which consists three n-bit
registers, four n-bit multiplexers, four n-bit adders,
and one n-bit comparator. Note that n is 12 for the
LINC compressor chip design| 14].

4.3 Block Adaptive Entropy Coder

The standard source pixel is then encoded by
using the block adaptive entropy coding scheme.
The BAEC processes input dataon a block-by-block
basis. A block can be any length of pixels. The fixed
block size] = 16 is practical for the majority of
applications.

To promote efficiency, the design of the BAEC
would be made specific to the code algorithms. A
functional design of the BAEC is shown in Fig. 8.
The BAEC includes a Mock buffer, a code estimator,
a k-bit sample splitter, and a fundamental-
sequence coder. The BAEC receives the string of
unsigned integers from the preprocessor and

//.



performs coding to reduce its data rate on a block-
by-block basis. Lach block is made up of 16 unsigned
integers. For cachinput block, an optimum option is
chosenoutof 11 optional code operators, which
include the backup operator, the fundamental
sequence (1'S) operator, and a combination of

fundamental sequence with k-bit pixelsplitting *

with k = 1, 2, 3, 4, 5, 6, 7, or 8. With the chosen
option, the BAEC proceeds to perform coding on the
16-sample 8-bit-per-sample input block. 1°S114
provides excellent performance over a broad range
of data contents with an entropy dynamic range
from (.75t0 10.5. The eleven code options are fully
implemented with only five regular hardware
blocks. A brief description of each building block is
as follows:

Block Buffer. The Block Buffer temporarily stores
the current 16- pixel block to enable block-pipelined
operation of the BAEC. At the end of an input line,
if less than 16 values remain, zeros will be
appended to fill the block. The resultant block will
thenbe processed like other blocks. It is built with
16 12-bit shift registers.

Code Estimator. The code estimator chooses the
code algorithm that performs beston the current
block of input data. The selection is madc on the
bias of simple arithmetical operations on the
sequence of input bits. The Fo summer is used to sum

up all the unsigned integers in & . Theset of
decision regions as described in I'able 1 is realized
with a random logic decoder.
k-bit Sample Splitter

The k-bit pixel splitting is implemented by
using a k-bit right-logical barrel shifters.
Fundamental-Sequence Coder

The Fundamental sequence (1'S) operator forms
the backbone for all reversible cod ing operators

used in t he UNC except for the Backup operator. 1t
n
generates a codeword for each entry value of & .

~

~n
For each unsigned integer i of § , its 'S codeword is
an (41 )-bit binary string consisting of i zcroes
followed by a single one. The non-zero onc makes
the code reversible and serves as a marker for the
decoding process. This operator is also called
PSI1,ol.Jor PSI1 ]. The length of a Fundamental

Sequence is
J
Fo=J4 2,8, (9
J=1

where ] =16 is the number of pixels in a block.
The FS coder is implemented by using a
resetable and loadable memory. A biased

accumulator is used to calculate the length of the
sequence. Theintermediate sum F0; tracks the
“single onc" position of each codeword stored in the
rnemory. The final sum ¥ represents the bit length
of cach block.

Huffman 3-tuple Coder (1)

The fundamental sequence coding, becomes quite
incfficient for low entropies, since the length of
code words is at least one bit pcr pixel. An
approach to improve the performance of the
fundamental scquence coding for the low-entropy
source data is achicved by a luffman 3-tuple
coding method. The redundancy left in data sou rcc

e~

IS :]’Sl]['gn] can be reduced by using a Huffman 3-
tuple code as specified in Table 2.

The 3-tuple Bi's arc derived by the following
operations:
(a) Fundamental Sequence:

Fs=prsid1=¢¢,...¢, (10)
(b) Complement:

Fs$=¢,¢,.. &
(c) Third Extension: )

Ext[FS1=(, §,80% (Gs6e)* - (4,00

= ‘1*ﬁ7*"'ﬂa

where a [{—’1783-!111718&. The last 3-tuple is filled

T3
with O if necessary.

‘I’able 1. I’'S§114 Decision Regions, N =11, n =8, J=16

Code Option Code 1D Decision Region

(N=11,n=8,}=16)
¥ 0000 10 <24
¥ 0 0001 24 <F0 <5
¥ 1 0010 56 <F0 <120
¥ o 0011 120 < FU <248
913 0100 248 <HI < 504
¥y 4 0101 504 <FO <1016
¥ 5 0110 1016 <HI <2040
¥ 6 0111 2040< rv < 408s
¥y 7 1000 4088< F0 < 8184
¥ g 1001 8184< JU 20472
LY 1111 20472 <




Table 2 3-Tuple Huff ffman Code, cfsli
3-tuple code word
B ofs[f;]
000 1
001 001
010 010
100 011
0l 00000
101 00001
110 00010
111 00011

4.4 Compressed Data Formatter

Figure 10 depicts the format for the output bit
string from the UNC coder. It consists mainly of a
reference pixel and a collection of compressed data
blocks. The first n-bits of the compressed output bit
string is the first n-bit pixcl value of the input data
line and can beused as the reference pixel. The
compressed bit string for cach data block consists of
a 4-bit 1D code and followed by either a backup
block of ]Jn -bit mapped differences or a FS
compressed bit string appended with ]k bit sub-
strings, where k is clctm-mined by the selected code
operator PSI7 g The final output from the UNC
after processing an input line is a compressed bit
string of data which is completely packed and
there areno inter-bJock gaps between compressed
bit strings for the blocks. The compressed bit string
are read out by groups of 16 bits in parallel.

The Compressed Data Formatter includes 1S
Packer, SS I’acker, Backup Packer, and Formatter,
ES Packer, The FS Packer prepares 16-hit words for
Formatter to pickup from FSsequence with 1D bits.
SS Packer. The SS Packer buffers and packs k
lowest-order bits of the 16 split pixcls into k 16-bit
words for the Format ter.

Backup Packer. If the backup code operator option
is sclected, Backup Packer module buffers and packs
the 16 mappeddifferences into 16-bit words for the
Formatter.

Formatter. The Formatter completely conca tenates
and reads out the packed words from FS Packer, SS
Packer, or Backup Packer modules to ensure that
there arc no inter-block gaps between compressed
bit strings. The Formatter is designed with barrel
shifters and control logic gates.

4.5 Prototype Chip

The UNC compressor chip was designed, tested,
and demonstrated [14]. It was designed with a 1.6-
pm standard-ccl] CMOS technology and mounted in
an 84-pin pin-grid-array package. As shown in Fig.
11, the UNC chip design occupies a compact chip
arca of 8.8 x 7.2 mm?, with 49,000 transistors, 79
pads. The worst case power dissipation is 0,25
watts at a 10 Ml Iz system clock. This compressor
chip is mounted in an 84-pin pin-grid-array
package. It can operate up to 20M pixels/scc.
Summary of chip information is givenin Table 3.

‘Table 3. UNC compressor chip information

Chip Name UNC Compressor Chip
Design Method Standard-Cell V{S! design
Process 7 echnology 1.6-micron CMQS

Die Size 8.774X 7,164 mmn?

1 otal# of Device 48,986

1 otal# of Cells 37224

No. of Pads 79

Package 84-pin PGA

Power 0.25 W

Data Rate 20 M pixels/see

5 Conclusion

The goal of data compression is to red uce the
communication and Storage costs for data Systems
where reduction in the volume of transmitted or
recorded data is important. VI .S1 data compression
rc.search has been motivated by the needs of high-
speed high-performance data compression and
inspired by the neural networks,
parallel /pipeclined processing, and the VI.SI
technologies. An integrated data compression
system has been proposed to meet the needs of
hi#~-speed high-performance data compression.
Its primary application is targeted for the
advanced multi-instrument spacecraft payload
system that has various source data such as science
data, image, video, telemetry and binary files.
The proposed integrated data compression system
combines a high-ratio lossy data compressor with a
lossless data compressor to provide various
Compression schemes to meet a broad area of
applications. The embeddedlossy compressor is a
high-speed VLSI necuroprocessor for adaptive
image compression based upon a frequency-sensitive
self-organization algorithm. Performances of the

the



5O neuroprocessor can achieve near-optimal
results and a time complexity 0(1) for cach
quantization vector. A ?S-dimensional 64-
codevector adaptive vector quantizer prototype
chip was demonstrated to operate at 2 M vectors per
second, It provides an intrinsic compression ratio as
high as 33. The embedded lossless compressor is a
hi~l~-speed VI .S1 pipelined processor design based
onthe Rice algori thin. The chip occupies a compact

chip arca of 8.8x7.2 mm?2 in a 1.6-um CMOS
technology and operates up to 20M pixels/see.
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